|  Help  |  About  |  Contact Us

Publication : Lipoxin A₄ and 15-epi-lipoxin A₄ protect against experimental cerebral malaria by inhibiting IL-12/IFN-γ in the brain.

First Author  Shryock N Year  2013
Journal  PLoS One Volume  8
Issue  4 Pages  e61882
PubMed ID  23613965 Mgi Jnum  J:200108
Mgi Id  MGI:5506994 Doi  10.1371/journal.pone.0061882
Citation  Shryock N, et al. (2013) Lipoxin A(4) and 15-epi-lipoxin A(4) protect against experimental cerebral malaria by inhibiting IL-12/IFN-gamma in the brain. PLoS One 8(4):e61882
abstractText  Cerebral malaria is caused by infection with Plasmodium falciparum and can lead to severe neurological manifestations and predominantly affects sub-Saharan African children. The pathogenesis of this disease involves unbalanced over-production of pro-inflammatory cytokines. It is clear that signaling though IL-12 receptor is a critical step for development of cerebral malaria, IL-12 genetic deficiency failed to show the same effect, suggesting that there is redundancy among the soluble mediators which leads to immunopathology and death. Consequently, counter-regulatory mediators might protect the host during cerebral malaria. We have previously showed that endogenously produced lipoxins, which are anti-inflammatory mediators generated by 5-lipoxygenase (5-LO)-dependent metabolism of arachidonic acid, limit host damage in a model of mouse toxoplasmosis. We postulated here that lipoxins might also play a counter-regulatory role during cerebral malaria. To test this hypothesis, we infected 5-LO-deficient hosts with P. berghei ANKA strain, which induces a mouse model of cerebral malaria (ECM). Our results show accelerated mortality concomitant with exuberant IL-12 and IFN-gamma production in the absence of 5-lipoxygenase. Moreover, in vivo administration of lipoxin to 5-LO-deficient hosts prevented early mortality and reduced the accumulation of CD8(+)IFN-gamma (+) cells in the brain. Surprisingly, WT animals treated with lipoxin either at the time of infection or 3 days post-inoculum also showed prolonged survival and diminished brain inflammation, indicating that although protective, endogenous lipoxin production is not sufficient to optimally protect the host from brain damage in cerebral malaria. These observations establish 5-LO/LXA4 as a host protective pathway and suggest a new therapeutic approach against human cerebral malaria (HCM). (255 words).
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression