|  Help  |  About  |  Contact Us

Publication : Autophagy regulates inflammation in adipocytes.

First Author  Yoshizaki T Year  2012
Journal  Biochem Biophys Res Commun Volume  417
Issue  1 Pages  352-7
PubMed ID  22155234 Mgi Jnum  J:180307
Mgi Id  MGI:5306082 Doi  10.1016/j.bbrc.2011.11.114
Citation  Yoshizaki T, et al. (2012) Autophagy regulates inflammation in adipocytes. Biochem Biophys Res Commun 417(1):352-7
abstractText  Autophagy is an essential process for both the maintenance and the survival of cells, with homeostatic low levels of autophagy being critical for intracellular organelles and proteins. In insulin resistant adipocytes, various dysfunctional/damaged molecules, organelles, proteins, and end-products accumulate. However, the role of autophagy (in particular, whether autophagy is activated or not) is poorly understood. In this study we found that in adipose tissue of insulin resistant mice and hypertrophic 3T3-L1 adipocytes autophagy was suppressed. Also in hypertrophic adipocytes, autophagy-related gene expression, such as LAMP1, LAMP2, and Atg5 was reduced, whereas gene expression in the inflammatory-related genes, such as MCP-1, IL-6, and IL-1beta was increased. To find out whether suppressed autophagy was linked to inflammation we used the autophagy inhibitor, 3-methyladenine, to inhibit autophagy. Our results suggest that such inhibition leads to an increase in inflammatory gene expression and causes endoplasmic reticulum (ER) stress (which can be attenuated by treatment with the ER stress inhibitor, Tauroursodeoxycholic Acid). Conversely, the levels of inflammatory gene expression were reduced by the activation of autophagy or by the inhibition of ER stress. The results indicate that the suppression of autophagy increases inflammatory responses via ER stress, and also defines a novel role of autophagy as an important regulator of adipocyte inflammation in systemic insulin resistance.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression