|  Help  |  About  |  Contact Us

Publication : Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells.

First Author  Bray ER Year  2019
Journal  Neuron Volume  103
Issue  4 Pages  642-657.e7
PubMed ID  31255486 Mgi Jnum  J:284539
Mgi Id  MGI:6381920 Doi  10.1016/j.neuron.2019.05.044
Citation  Bray ER, et al. (2019) Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron 103(4):642-657.e7
abstractText  Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

28 Bio Entities

Trail: Publication

0 Expression