|  Help  |  About  |  Contact Us

Publication : Early embryonic lethality caused by targeted disruption of the 3-hydroxy-3-methylglutaryl-CoA reductase gene.

First Author  Ohashi K Year  2003
Journal  J Biol Chem Volume  278
Issue  44 Pages  42936-41
PubMed ID  12920113 Mgi Jnum  J:86378
Mgi Id  MGI:2679748 Doi  10.1074/jbc.M307228200
Citation  Ohashi K, et al. (2003) Early embryonic lethality caused by targeted disruption of the 3-hydroxy-3-methylglutaryl-CoA reductase gene. J Biol Chem 278(44):42936-41
abstractText  The endoplasmic reticulum (ER) enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which converts HMG-CoA to mevalonate, catalyzes the ratelimiting step in cholesterol biosynthesis. Because this mevalonate pathway also produces several non-sterol isoprenoid compounds, the level of HMG-CoA reductase activity may coordinate many cellular processes and functions. We used gene targeting to knock out the mouse HMG-CoA reductase gene. The heterozygous mutant mice (Hmgcr+/-) appeared normal in their development and gross anatomy and were fertile. Although HMG-CoA reductase activities were reduced in Hmgcr+/- embryonic fibroblasts, the enzyme activities and cholesterol biosynthesis remained unaffected in the liver from Hmgcr+/- mice, suggesting that the haploid amount of Hmgcr gene is not rate-limiting in the hepatic cholesterol homeostasis. Consistently, plasma lipoprotein profiles were similar between Hmgcr+/- and Hmgcr+/+ mice. In contrast, the embryos homozygous for the Hmgcr mutant allele were recovered at the blastocyst stage, but not at E8.5, indicating that HMG-CoA reductase is crucial for early development of the mouse embryos. The lethal phenotype was not completely rescued by supplementing the dams with mevalonate. Although it has been postulated that a second, peroxisome-specific HMG-CoA reductase could substitute for the ER reductase in vitro, we speculate that the putative peroxisomal reductase gene, if existed, does not fully compensate for the lack of the ER enzyme at least in embryogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression