|  Help  |  About  |  Contact Us

Publication : Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling.

First Author  Liu H Year  2020
Journal  Sci Adv Volume  6
Issue  1 Pages  eaay3566
PubMed ID  31911948 Mgi Jnum  J:289637
Mgi Id  MGI:6430883 Doi  10.1126/sciadv.aay3566
Citation  Liu H, et al. (2020) Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling. Sci Adv 6(1):eaay3566
abstractText  In this study, we investigated the roles of Epac1 in pathological angiogenesis and its potential as a novel therapeutic target for the treatment of vasoproliferative diseases. Genetic deletion of Epac1 ameliorated pathological angiogenesis in mouse models of oxygen-induced retinopathy (OIR) and carotid artery ligation. Moreover, genetic deletion or pharmacological inhibition of Epac1 suppressed microvessel sprouting from ex vivo aortic ring explants. Mechanistic studies revealed that Epac1 acted as a previously unidentified inhibitor of the gamma-secretase/Notch signaling pathway via interacting with gamma-secretase and regulating its intracellular trafficking while enhancing vascular endothelial growth factor signaling to promote pathological angiogenesis. Pharmacological administration of an Epac-specific inhibitor suppressed OIR-induced neovascularization in wild-type mice, recapitulating the phenotype of genetic Epac1 knockout. Our results demonstrate that Epac1 signaling is critical for the progression of pathological angiogenesis but not for physiological angiogenesis and that the newly developed Epac-specific inhibitors are effective in combating proliferative retinopathy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression