|  Help  |  About  |  Contact Us

Publication : Overexpression of UCP-3 in skeletal muscle of mice results in increased expression of mitochondrial thioesterase mRNA.

First Author  Moore GB Year  2001
Journal  Biochem Biophys Res Commun Volume  283
Issue  4 Pages  785-90
PubMed ID  11350053 Mgi Jnum  J:69583
Mgi Id  MGI:1934958 Doi  10.1006/bbrc.2001.4848
Citation  Moore GB, et al. (2001) Overexpression of UCP-3 in skeletal muscle of mice results in increased expression of mitochondrial thioesterase mRNA. Biochem Biophys Res Commun 283(4):785-90
abstractText  Mice overexpressing human UCP-3 in skeletal muscle (UCP-3tg) are lean despite overeating, have increased metabolic rate, and their skeletal muscle mitochondria show increased proton conductance. The true function of UCP-3 however, has yet to be determined. It is assumed that UCP-3tg mice have increased fatty acid beta-oxidation to fuel their increased metabolic rate. In this study we have quantified skeletal muscle mRNA levels of a number of genes involved in fatty acid metabolism. mRNA levels of uncoupling protein-2, carnitine palmitoyl transferase-1beta and fatty acid binding proteins, and transporters were unchanged when compared to wild-type mice. Lipoprotein lipase mRNA was slightly, but significantly, increased by 50%. The most notable change in gene expression was a threefold increase in mitochondrial thioesterase (MTE-1) expression. In the face of a chronic increase in mitochondrial uncoupling these changes suggest that increased flux of fatty acids through the beta-oxidation pathway does not necessarily require marked changes in expression of genes involved in fatty acid metabolism. The large increase in MTE-1 both confirms the importance of this gene in situations where mitochondrial beta-oxidation is increased and supports the hypothesis that UCP-3 exports fatty acids generated by MTE-1 in the mitochondrion. Copyright 2001 Academic Press.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression