|  Help  |  About  |  Contact Us

Publication : The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis: amelioration by resveratrol.

First Author  Saha A Year  2012
Journal  Hum Mol Genet Volume  21
Issue  10 Pages  2233-44
PubMed ID  22331300 Mgi Jnum  J:183802
Mgi Id  MGI:5319282 Doi  10.1093/hmg/dds038
Citation  Saha A, et al. (2012) The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis: amelioration by resveratrol. Hum Mol Genet 21(10):2233-44
abstractText  Disruption of the blood-brain barrier (BBB) is a serious complication frequently encountered in neurodegenerative disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. It remains unclear whether BBB is disrupted in INCL and if so, what might be the molecular mechanism(s) of this complication. We previously reported that the Ppt1-knockout (Ppt1-KO) mice that mimic INCL manifest high levels of oxidative stress and neuroinflammation. Recently, it has been reported that CD4(+) T-helper 17 (T(H)17) lymphocytes may mediate BBB disruption and neuroinflammation, although the precise molecular mechanism(s) remain unclear. We sought to determine: (i) whether the BBB is disrupted in Ppt1-KO mice, (ii) if so, do T(H)17-lymphocytes underlie this complication, and (iii) how might T(H)17 lymphocytes breach the BBB. Here, we report that the BBB is disrupted in Ppt1-KO mice and that T(H)17 lymphocytes producing IL-17A mediate disruption of the BBB by stimulating production of matrix metalloproteinases (MMPs), which degrade the tight junction proteins essential for maintaining BBB integrity. Importantly, dietary supplementation of resveratrol (RSV), a naturally occurring antioxidant/anti-inflammatory polyphenol, markedly reduced the levels of T(H)17 cells, IL-17A and MMPs, and elevated the levels of tight junction proteins, which improved the BBB integrity in Ppt1-KO mice. Intriguingly, we found that RSV suppressed the differentiation of CD4(+) T lymphocytes to IL-17A-positive T(H)17 cells. Our findings uncover a mechanism by which T(H)17 lymphocytes mediate BBB disruption and suggest that small molecules such as RSV that suppress T(H)17 differentiation are therapeutic targets for neurodegenerative disorders such as INCL.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression