|  Help  |  About  |  Contact Us

Publication : Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder.

First Author  Lazarowski ER Year  2001
Journal  J Pharmacol Exp Ther Volume  297
Issue  1 Pages  43-9
PubMed ID  11259526 Mgi Jnum  J:85117
Mgi Id  MGI:2672145 Citation  Lazarowski ER, et al. (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J Pharmacol Exp Ther 297(1):43-9
abstractText  Extracellular nucleotides regulate transepithelial ion secretion via multiple receptors. The P2Y(2) receptor is the predominant transducer of chloride transport responses to nucleotides in the airways, but the P2 receptors that control ion transport in gastrointestinal epithelia have not been identified. UTP and UDP promote chloride secretion in mouse jejuna and gallbladder epithelia, respectively, and these responses were unaffected by P2Y(2) receptor gene disruption. Pharmacological data suggested the involvement of P2Y(4) and P2Y(6) receptors in gastrointestinal responses. To identify the P2Y receptors responsible for the gastrointestinal actions of UTP and UDP, we have cloned the murine P2Y(4) and P2Y(6) receptors and have stably expressed each in a null cell line to examine the nucleotide-promoted inositol phosphate formation and intracellular Ca(2+) mobilization. The (m)P2Y(4) receptor was potently, but not selectively, activated by UTP (UTP > or = ATP >ITP > GTP > CTP), and it was not activated by UDP or ADP. The (m)P2Y(6) receptor was highly selective for UDP (UDP >> ADP = GDP). The nucleotide selectivities observed with the recombinant (m)P2Y(4) and (m)P2Y(6) receptors resemble those for nucleotide-promoted chloride transport in murine P2Y(2)(-/-) jejuna and gallbladder epithelial cells, respectively. Ion transport responses to nucleotide additions were examined in freshly excised tissues from cystic fibrosis transmembrane regulator-deficient mice. Although the effect of UTP on jejunal short-circuit current (I(sc)) was impaired in the CF mouse, UDP-promoted I(sc) changes were not affected in CF gallbladder epithelium, suggesting that the P2Y(6) receptor is a target for treatment of CF gallbladder disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression