|  Help  |  About  |  Contact Us

Publication : The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex.

First Author  Way SW Year  2012
Journal  Hum Mol Genet Volume  21
Issue  14 Pages  3226-36
PubMed ID  22532572 Mgi Jnum  J:185369
Mgi Id  MGI:5428364 Doi  10.1093/hmg/dds156
Citation  Way SW, et al. (2012) The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum Mol Genet 21(14):3226-36
abstractText  Tuberous sclerosis complex (TSC) is caused by heterozygous mutations in either the TSC1 (hamartin) or the TSC2 (tuberin) gene. Among the multisystemic manifestations of TSC, the neurodevelopmental features cause the most morbidity and mortality, presenting a considerable clinical challenge. Hamartin and tuberin form a heterodimer that inhibits the mammalian target of rapamycin complex 1 (mTORC1) kinase, a major cellular regulator of protein translation, cell growth and proliferation. Hyperactivated mTORC1 signaling, an important feature of TSC, has prompted a number of preclinical and clinical studies with the mTORC1 inhibitor rapamycin. Equally exciting is the prospect of treating TSC in the perinatal period to block the progression of brain pathologies and allow normal brain development to proceed. We hypothesized that low-dose rapamycin given prenatally and/or postnatally in a well-established neuroglial (Tsc2-hGFAP) model of TSC would rescue brain developmental defects. We developed three treatment regimens with low-dose intraperitoneal rapamycin (0.1 mg/kg): prenatal, postnatal and pre/postnatal (combined). Combined rapamycin treatment resulted in almost complete histologic rescue, with a well-organized cortex and hippocampus almost identical to control animals. Other treatment regimens yielded less complete, but significant improvements in brain histology. To assess how treatment regimens affected cognitive function, we continued rapamycin treatment after weaning and performed behavioral testing. Surprisingly, the animals treated with the combined therapy did not perform as well as postnatally-treated animals in learning and memory tasks. These results have important translational implications in the optimization of the timing and dosage of rapamycin treatment in TSC affected children.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression