|  Help  |  About  |  Contact Us

Publication : Diversity in Overall Activity Regulation of Ribonucleotide Reductase.

First Author  Jonna VR Year  2015
Journal  J Biol Chem Volume  290
Issue  28 Pages  17339-48
PubMed ID  25971975 Mgi Jnum  J:223312
Mgi Id  MGI:5648661 Doi  10.1074/jbc.M115.649624
Citation  Jonna VR, et al. (2015) Diversity in Overall Activity Regulation of Ribonucleotide Reductase. J Biol Chem 290(28):17339-48
abstractText  Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides, which are used as building blocks for DNA replication and repair. This process is tightly regulated via two allosteric sites, the specificity site (s-site) and the overall activity site (a-site). The a-site resides in an N-terminal ATP cone domain that binds dATP or ATP and functions as an on/off switch, whereas the composite s-site binds ATP, dATP, dTTP, or dGTP and determines which substrate to reduce. There are three classes of RNRs, and class I RNRs consist of different combinations of alpha and beta subunits. In eukaryotic and Escherichia coli class I RNRs, dATP inhibits enzyme activity through the formation of inactive alpha6 and alpha4beta4 complexes, respectively. Here we show that the Pseudomonas aeruginosa class I RNR has a duplicated ATP cone domain and represents a third mechanism of overall activity regulation. Each alpha polypeptide binds three dATP molecules, and the N-terminal ATP cone is critical for binding two of the dATPs because a truncated protein lacking this cone could only bind dATP to its s-site. ATP activates the enzyme solely by preventing dATP from binding. The dATP-induced inactive form is an alpha4 complex, which can interact with beta2 to form a non-productive alpha4beta2 complex. Other allosteric effectors induce a mixture of alpha2 and alpha4 forms, with the former being able to interact with beta2 to form active alpha2beta2 complexes. The unique features of the P. aeruginosa RNR are interesting both from evolutionary and drug discovery perspectives.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression