|  Help  |  About  |  Contact Us

Publication : NH2- and COOH-terminal truncations of murine granulocyte chemotactic protein-2 augment the in vitro and in vivo neutrophil chemotactic potency.

First Author  Wuyts A Year  1999
Journal  J Immunol Volume  163
Issue  11 Pages  6155-63
PubMed ID  10570306 Mgi Jnum  J:58649
Mgi Id  MGI:1349311 Doi  10.4049/jimmunol.163.11.6155
Citation  Wuyts A, et al. (1999) NH2- and COOH-terminal truncations of murine granulocyte chemotactic protein-2 augment the in vitro and in vivo neutrophil chemotactic potency. J Immunol 163(11):6155-63
abstractText  Chemokines are important mediators of leukocyte migration during the inflammatory response. Post-translational modifications affect the biological potency of chemokines. In addition to previously identified NH2-terminally truncated forms, COOH-terminally truncated forms of the CXC chemokine murine granulocyte chemotactic protein-2 (GCP-2) were purified from conditioned medium of stimulated fibroblasts. The truncations generated 28 natural murine GCP-2 isoforms containing 69-92 residues, including most intermediate forms. Both NH2- and COOH-terminal truncations of GCP-2 resulted in enhanced chemotactic potency for human and murine neutrophils in vitro. The truncated isoform GCP-2(9-78) was 30-fold more potent than intact GCP-2(1-92)/LPS-induced CXC chemokine (LIX) at inducing an intracellular calcium increase in human neutrophils. After intradermal injection in mice, GCP-2(9-78) was also more effective than GCP-2(1-92)/LIX at inducing neutrophil infiltration. Similar to human IL-8 and GCP-2, murine GCP-2(9-78) and macrophage inflammatory protein-2 (MIP-2) induced calcium increases in both CXCR1 and CXCR2 transfectants. Murine GCP-2(9-78) could desensitize the calcium response induced by MIP-2 in human neutrophils and vice versa. Furthermore, MIP-2 and truncated GCP-2(9-78), but not intact GCP-2(1-92)/LIX, partially desensitized the calcium response to human IL-8 in human neutrophils. Taken together, these findings point to an important role of post-translationally modified GCP-2 to replace IL-8 in the mouse.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression