|  Help  |  About  |  Contact Us

Publication : Smooth muscle Notch1 mediates neointimal formation after vascular injury.

First Author  Li Y Year  2009
Journal  Circulation Volume  119
Issue  20 Pages  2686-92
PubMed ID  19433762 Mgi Jnum  J:166426
Mgi Id  MGI:4844260 Doi  10.1161/CIRCULATIONAHA.108.790485
Citation  Li Y, et al. (2009) Smooth muscle Notch1 mediates neointimal formation after vascular injury. Circulation 119(20):2686-92
abstractText  BACKGROUND: Notch1 regulates binary cell fate determination and is critical for angiogenesis and cardiovascular development. However, the pathophysiological role of Notch1 in the postnatal period is not known. We hypothesize that Notch1 signaling in vascular smooth muscle cells (SMCs) may contribute to neointimal formation after vascular injury. METHODS AND RESULTS: We performed carotid artery ligation in wild-type, control (SMC-specific Cre recombinase transgenic [smCre-Tg]), general Notch1 heterozygous deficient (N1+/-), SMC-specific Notch1 heterozygous deficient (smN1+/-), and general Notch3 homozygous deficient (N3-/-) mice. Compared with wild-type or control mice, N1+/- and smN1+/- mice showed a 70% decrease in neointimal formation after carotid artery ligation. However, neointimal formation was similar between wild-type and N3-/- mice. Indeed, SMCs derived from explanted aortas of either N1(+/-)- or smN1+/- mice showed decreased chemotaxis and proliferation and increased apoptosis compared with control or N3-/- mice. This correlated with decreased staining of proliferating cell nuclear antigen-positive cells and increased staining of cleaved caspase-3 in the intima of N1(+/-)- or smN1+/- mice. In SMCs derived from CHF1/Hey2-/- mice, activation of Notch signaling did not lead to increased SMC proliferation or migration. CONCLUSIONS: These findings indicate that Notch1, rather than Notch3, mediates SMC proliferation and neointimal formation after vascular injury through CHF1/Hey2 and suggest that therapies that target Notch1/CHF1/Hey2 in SMCs may be beneficial in preventing vascular proliferative diseases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression