|  Help  |  About  |  Contact Us

Publication : Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis.

First Author  Hetz C Year  2008
Journal  Proc Natl Acad Sci U S A Volume  105
Issue  2 Pages  757-62
PubMed ID  18178615 Mgi Jnum  J:131028
Mgi Id  MGI:3772721 Doi  10.1073/pnas.0711094105
Citation  Hetz C, et al. (2008) Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A 105(2):757-62
abstractText  The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (XBP-1) is a key transcriptional regulator of the UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation. However, the role of the UPR in the CNS has not been addressed directly. Here we describe the generation of a brain-specific XBP-1 conditional KO strain (XBP-1(Nes-/-)). XBP-1(Nes-/-) mice are viable and do not develop any spontaneous neurological dysfunction, although ER stress signaling in XBP-1(Nes-/-) primary neuronal cell cultures was impaired. To assess the function of XBP-1 in pathological conditions involving protein misfolding and ER stress, we infected XBP-1(Nes-/-) mice with murine prions. To our surprise, the activation of stress responses triggered by prion replication was not influenced by XBP-1 deficiency. Neither prion aggregation, neuronal loss, nor animal survival was affected. Hence, this most highly conserved arm of the UPR may not contribute to the occurrence or pathology of neurodegenerative conditions associated with prion protein misfolding despite predictions that such diseases are related to ER stress and irreversible neuronal damage.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression