|  Help  |  About  |  Contact Us

Publication : The heparan sulfate proteoglycan Syndecan-1 influences local bone cell communication via the RANKL/OPG axis.

First Author  Timmen M Year  2020
Journal  Sci Rep Volume  10
Issue  1 Pages  20510
PubMed ID  33239699 Mgi Jnum  J:299709
Mgi Id  MGI:6491061 Doi  10.1038/s41598-020-77510-3
Citation  Timmen M, et al. (2020) The heparan sulfate proteoglycan Syndecan-1 influences local bone cell communication via the RANKL/OPG axis. Sci Rep 10(1):20510
abstractText  The heparan sulfate proteoglycan Syndecan-1, a mediator of signals between the extracellular matrix and cells involved is able to interact with OPG, one of the major regulators of osteoclastogenesis. The potential of osteoblasts to induce osteoclastogenesis is characterized by a switch of OPG (low osteoclastogenic potential) towards RANKL production (high osteoclastogenic potential). In the present study, we investigated the influence of endogenous Syndecan-1 on local bone-cell-communication via the RANKL/OPG-axis in murine osteoblasts and osteoclasts in wild type and Syndecan-1 lacking cells. Syndecan-1 expression and secretion was increased in osteoblasts with high osteoclastogenic potential. Syndecan-1 deficiency led to increased OPG release by osteoblasts that decreased the availability of RANKL. In co-cultures of Syndecan-1 deficient osteoblasts with osteoclast these increased OPG in supernatant caused decreased development of osteoclasts. Syndecan-1 and RANKL level were increased in serum of aged WT mice, whereas Syndecan-1 deficient mice showed high serum OPG concentration. However, bone structure of Syndecan-1 deficient mice was not different compared to wild type. In conclusion, Syndecan-1 could be regarded as a new modulator of bone-cell-communication via RANKL/OPG axis. This might be of high impact during bone regeneration or bone diseases like cancer where Syndecan-1 expression is known to be even more prevalent.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression