|  Help  |  About  |  Contact Us

Publication : Abnormal development of dendritic spines in FMR1 knock-out mice.

First Author  Nimchinsky EA Year  2001
Journal  J Neurosci Volume  21
Issue  14 Pages  5139-46
PubMed ID  11438589 Mgi Jnum  J:70178
Mgi Id  MGI:2136541 Doi  10.1523/JNEUROSCI.21-14-05139.2001
Citation  Nimchinsky EA, et al. (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139-46
abstractText  Fragile X syndrome is caused by a mutation in the FMR1 gene leading to absence of the fragile X mental retardation protein (FMRP). Reports that patients and adult FMR1 knock-out mice have abnormally long dendritic spines of increased density suggested that the disorder might involve abnormal spine development. Because spine length, density, and motility change dramatically in the first postnatal weeks, we analyzed these properties in mutant mice and littermate controls at 1, 2, and 4 weeks of age. To label neurons, a viral vector carrying the enhanced green fluorescent protein gene was injected into the barrel cortex. Layer V neurons were imaged on a two-photon laser scanning microscope in fixed tissue sections. Analysis of >16,000 spines showed clear developmental patterns. Between 1 and 4 weeks of age, spine density increased 2.5-fold, and mean spine length decreased by 17% in normal animals. Early during cortical synaptogenesis, pyramidal cells in mutant mice had longer spines than controls. At 1 week, spine length was 28% greater in mutants than in controls. At 2 weeks, this difference was 10%, and at 4 weeks only 3%. Similarly, spine density was 33% greater in mutants than in controls at 1 week of age. At 2 or 4 weeks of age, differences were not detectable. The spine abnormality was not detected in neocortical organotypic cultures. The transient nature of the spine abnormality in the intact animal suggests that FMRP might play a role in the normal process of dendritic spine growth in coordination with the experience-dependent development of cortical circuits.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

15 Bio Entities

Trail: Publication

0 Expression