|  Help  |  About  |  Contact Us

Publication : Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1<sup>crv4</sup> mouse model of SCAR13 ataxia.

First Author  Bossi S Year  2018
Journal  Neurobiol Dis Volume  109
Issue  Pt A Pages  44-53
PubMed ID  28982591 Mgi Jnum  J:260245
Mgi Id  MGI:6140816 Doi  10.1016/j.nbd.2017.10.001
Citation  Bossi S, et al. (2018) Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1(crv4) mouse model of SCAR13 ataxia. Neurobiol Dis 109(Pt A):44-53
abstractText  Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1(crv4/crv4)) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1(crv4) and Grm5(ko) mice to generate double mutants (Grm1(crv4/crv4)Grm5(ko/ko)) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1(crv4/crv4) mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1(crv4/crv4) mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1(crv4/crv4) mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1(crv4) mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression