|  Help  |  About  |  Contact Us

Publication : Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes.

First Author  Rodriguez L Year  2005
Journal  Endocrinology Volume  146
Issue  12 Pages  5294-303
PubMed ID  16166224 Mgi Jnum  J:129678
Mgi Id  MGI:3769969 Doi  10.1210/en.2005-0256
Citation  Rodriguez L, et al. (2005) Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes. Endocrinology 146(12):5294-303
abstractText  The extracellular Ca(2+)-sensing receptor (CaR) plays an essential role in mineral homeostasis. Studies to generate CaR-knockout (CaR(-/-)) mice indicate that insertion of a neomycin cassette into exon 5 of the mouse CaR gene blocks the expression of full-length CaRs. This strategy, however, allows for the expression of alternatively spliced CaRs missing exon 5 [(Exon5(-))CaRs]. These experiments addressed whether growth plate chondrocytes (GPCs) from CaR(-/-) mice express (Exon5(-))CaRs and whether these receptors activate signaling. RT-PCR and immunocytochemistry confirmed the expression of (Exon5(-))CaR in growth plates from CaR(-/-) mice. In Chinese hamster ovary or human embryonic kidney-293 cells, recombinant human (Exon5(-))CaRs failed to activate phospholipase C likely due to their inability to reach the cell surface as assessed by intact-cell ELISA and immunocytochemistry. Human (Exon5(-))CaRs, however, trafficked normally to the cell surface when overexpressed in wild-type or CaR(-/-) GPCs. Immunocytochemistry of growth plate sections and cultured GPCs from CaR(-/-) mice showed easily detectable cell-membrane expression of endogenous CaRs (presumably (Exon5(-))CaRs), suggesting that trafficking of this receptor form to the membrane can occur in GPCs. In GPCs from CaR(-/-) mice, high extracellular [Ca(2+)] ([Ca(2+)](e)) increased inositol phosphate production with a potency comparable with that of wild-type GPCs. Raising [Ca(2+)](e) also promoted the differentiation of CaR(-/-) GPCs as indicated by changes in proteoglycan accumulation, mineral deposition, and matrix gene expression. Taken together, our data support the idea that expression of (Exon5(-))CaRs may compensate for the loss of full-length CaRs and be responsible for sensing changes in [Ca(2+)](e) in GPCs in CaR(-/-) mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression