|  Help  |  About  |  Contact Us

Publication : Increased susceptibility of mice lacking Clara cell 10-kDa protein to lung tumorigenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a potent carcinogen in cigarette smoke.

First Author  Yang Y Year  2004
Journal  J Biol Chem Volume  279
Issue  28 Pages  29336-40
PubMed ID  15148323 Mgi Jnum  J:90868
Mgi Id  MGI:3044958 Doi  10.1074/jbc.C400162200
Citation  Yang Y, et al. (2004) Increased Susceptibility of Mice Lacking Clara Cell 10-kDa Protein to Lung Tumorigenesis by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a Potent Carcinogen in Cigarette Smoke. J Biol Chem 279(28):29336-40
abstractText  Ninety percent of all human lung cancers are related to cigarette smoking. Both tobacco smoke and lung tumorigenesis are associated with drastically reduced levels of Clara cell 10-kDa protein (CC10), a multifunctional secreted protein, naturally produced by the airway epithelia of virtually all mammals. We previously reported that the expression of CC10 is markedly reduced in animals exposed to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK, a potent carcinogen in tobacco smoke. Furthermore, it has been reported that CC10 expression, induced in certain tumor cells, reverses the transformed phenotype. We demonstrate here that NNK exposure of CC10-knock-out (CC10-KO) mice causes a significantly higher incidence of airway epithelial hyperplasia and lung adenomas compared with wild type (WT) littermates (30% CC10-KO versus 5% WT, p = 0.041). We also found that compared with NNK-treated WT mice, CC10-KO mice manifest increased frequency of K-ras mutation, elevated level of Fas ligand (FasL) expression, and increased MAPK/Erk phosphorylation, all of which are considered predisposing events in NNK-induced lung tumorigenesis. We propose that CC10 has a protective role against NNK-induced lung tumorigenesis mediated via down-regulation of the above-mentioned predisposing events.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression