|  Help  |  About  |  Contact Us

Publication : Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9.

First Author  DeBosch BJ Year  2014
Journal  Nat Commun Volume  5
Pages  4642 PubMed ID  25100214
Mgi Jnum  J:221544 Mgi Id  MGI:5640935
Doi  10.1038/ncomms5642 Citation  DeBosch BJ, et al. (2014) Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun 5:4642
abstractText  Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression