|  Help  |  About  |  Contact Us

Publication : A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion.

First Author  Sohn RL Year  2009
Journal  Proc Natl Acad Sci U S A Volume  106
Issue  23 Pages  9274-9
PubMed ID  19470472 Mgi Jnum  J:150083
Mgi Id  MGI:3849657 Doi  10.1073/pnas.0904398106
Citation  Sohn RL, et al. (2009) A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proc Natl Acad Sci U S A 106(23):9274-9
abstractText  Skeletal muscle is formed via fusion of myoblasts, a well-studied process in Drosophila. In vertebrates however, this process is less well understood, and whether there is evolutionary conservation with the proteins studied in flies is under investigation. Sticks and stones (Sns), a cell surface protein found on Drosophila myoblasts, has structural homology to nephrin. Nephrin is a protein expressed in kidney that is part of the filtration barrier formed by podocytes. No previous study has established any role for nephrin in skeletal muscle. We show, using two models, zebrafish and mice, that the absence of nephrin results in poorly developed muscles and incompletely fused myotubes, respectively. Although nephrin-knockout (nephrin(KO)) myoblasts exhibit prolonged activation of MAPK/ERK pathway during myogenic differentiation, expression of myogenin does not seem to be altered. Nevertheless, MAPK pathway blockade does not rescue myoblast fusion. Co-cultures of unaffected human fetal myoblasts with nephrin(KO) myoblasts or myotubes restore the formation of mature myotubes; however, the contribution of nephrin(KO) myoblasts is minimal. These studies suggest that nephrin plays a role in secondary fusion of myoblasts into nascent myotubes, thus establishing a possible functional conservation with Drosophila Sns.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

14 Expression

Trail: Publication