|  Help  |  About  |  Contact Us

Publication : Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis.

First Author  Cheng HY Year  2016
Journal  J Clin Invest Volume  126
Issue  9 Pages  3236-46
PubMed ID  27482882 Mgi Jnum  J:237255
Mgi Id  MGI:5811745 Doi  10.1172/JCI83136
Citation  Cheng HY, et al. (2016) Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest 126(9):3236-46
abstractText  ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol accumulation and alters T cell homeostasis, which may contribute to progression of atherosclerosis. Here, we investigated how the selective loss of ABCG1 in T cells impacts atherosclerosis in LDL receptor-deficient (LDLR-deficient) mice, a model of the disease. In LDLR-deficient mice fed a high-cholesterol diet, T cell-specific ABCG1 deficiency protected against atherosclerotic lesions. Furthermore, T cell-specific ABCG1 deficiency led to a 30% increase in Treg percentages in aorta and aorta-draining lymph nodes (LNs) of these mice compared with animals with only LDLR deficiency. When Abcg1 was selectively deleted in Tregs of LDLR-deficient mice, we observed a 30% increase in Treg percentages in aorta and aorta-draining LNs and reduced atherosclerosis. In the absence of ABCG1, intracellular cholesterol accumulation led to downregulation of the mTOR pathway, which increased the differentiation of naive CD4 T cells into Tregs. The increase in Tregs resulted in reduced T cell activation and increased IL-10 production by T cells. Last, we found that higher ABCG1 expression in Tregs was associated with a higher frequency of these cells in human blood samples. Our study indicates that ABCG1 regulates T cell differentiation into Tregs, highlighting a pathway by which cholesterol accumulation can influence T cell homeostasis in atherosclerosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression