|  Help  |  About  |  Contact Us

Publication : Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes.

First Author  Zurawski Z Year  2019
Journal  Sci Signal Volume  12
Issue  569 PubMed ID  30783011
Mgi Jnum  J:284450 Mgi Id  MGI:6381238
Doi  10.1126/scisignal.aat8595 Citation  Zurawski Z, et al. (2019) Disabling the Gbetagamma-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 12(569)
abstractText  G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gbetagamma subunits from activated G proteins decreases the activity of voltage-gated Ca(2+) channels (VGCCs), decreasing excitability. A less understood Gbetagamma-mediated mechanism downstream of Ca(2+) entry is the binding of Gbetagamma to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Delta3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic alpha2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Delta3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gbetagamma-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression