|  Help  |  About  |  Contact Us

Publication : Analysis of hindbrain patterning defects caused by the kreisler(enu) mutation reveals multiple roles of Kreisler in hindbrain segmentation.

First Author  Sadl VS Year  2003
Journal  Dev Dyn Volume  227
Issue  1 Pages  134-42
PubMed ID  12701106 Mgi Jnum  J:83304
Mgi Id  MGI:2660991 Doi  10.1002/dvdy.10279
Citation  Sadl VS, et al. (2003) Analysis of hindbrain patterning defects caused by the kreislerenu mutation reveals multiple roles of Kreisler in hindbrain segmentation. Dev Dyn 227(1):134-42
abstractText  The embryonic hindbrain is subdivided into eight subunits, termed rhombomeres (r1-r8). The Kreisler (Krml1/MafB/val) transcription factor is expressed in and essential for patterning rhombomeres 5 and 6. Here, we have shown that in the chemically induced kreisler(enu) (kr(enu)) allele, a point mutation in the DNA binding domain abolishes or severely reduces Kreisler-dependent transcription. Comparison of kr(enu)/kr(enu) embryos with those homozygous for the classic kreisler (kr) mutation has reconciled past discrepancies and revealed multiple roles of Kreisler in hindbrain segmentation. These analyses demonstrate that Kreisler is required for maintenance and expansion but not initiation of the Krox20 expressing r5 domain. The differences in the 'r5-like' phenotype of kr(enu)/kr(enu) and kr/kr mouse embryos, and zebrafish carrying mutations in the Kreisler orthologue valentino (val) suggest that Kreisler performs many of its r5-specific functions by associating with other proteins. By contrast, kr/kr and kr(enu)/kr(enu) mouse and val-/- zebrafish embryos all exhibit indistinguishable defects in r6 specification. Thus, transcriptionally active Kreisler is required for r6 specification. Unlike mouse kr(enu)/kr(enu) and zebrafish val-/- embryos, kr/kr embryos exhibited anterior defects. We determined that the kr chromosomal inversion caused ectopic Kreisler expression in r3 of kr/kr and kr/+ embryos. Hence, Kreisler regulates maintenance and expansion of r5 and specification of r6 but is not required for r3 development. Developmental Dynamics 227:134-142, 2003.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression