|  Help  |  About  |  Contact Us

Publication : Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis.

First Author  Fitzgerald DC Year  2007
Journal  J Immunol Volume  179
Issue  5 Pages  3268-75
PubMed ID  17709543 Mgi Jnum  J:151823
Mgi Id  MGI:4355310 Doi  10.4049/jimmunol.179.5.3268
Citation  Fitzgerald DC, et al. (2007) Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J Immunol 179(5):3268-75
abstractText  IL-27 has been shown to play a suppressive role in experimental autoimmune encephalomyelitis (EAE) as demonstrated by more severe disease in IL-27R-deficient (WSX-1(-/-)) mice. However, whether IL-27 influences the induction or effector phase of EAE is unknown. This is an important question as therapies for autoimmune diseases are generally started after autoreactive T cells have been primed. In this study, we demonstrate maximal gene expression of IL-27 subunits and its receptor in the CNS at the effector phases of relapsing-remitting EAE including disease peak and onset of relapse. We also show that activated astrocyte cultures secrete IL-27p28 protein which is augmented by the endogenous factor, IFN-gamma. To investigate functional significance of a correlation between gene expression and disease activity, we examined the effect of IL-27 at the effector phase of disease using adoptive transfer EAE. Exogenous IL-27 potently suppressed the ability of encephalitogenic lymph node and spleen cells to transfer EAE. IL-27 significantly inhibited both nonpolarized and IL-23-driven IL-17 production by myelin-reactive T cells thereby suppressing their encephalitogenicity in adoptive transfer EAE. Furthermore, we demonstrate a strong suppressive effect of IL-27 on active EAE in vivo when delivered by s.c. osmotic pump. IL-27-treated mice had reduced CNS inflammatory infiltration and, notably, a lower proportion of Th17 cells. Together, these data demonstrate the suppressive effect of IL-27 on primed, autoreactive T cells, particularly, cells of the Th17 lineage. IL-27 can potently suppress the effector phase of EAE in vivo and, thus, may have therapeutic potential in autoimmune diseases such as multiple sclerosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression