|  Help  |  About  |  Contact Us

Publication : Loss of mTOR complex 1 induces developmental blockage in early T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia cells.

First Author  Hoshii T Year  2014
Journal  Proc Natl Acad Sci U S A Volume  111
Issue  10 Pages  3805-10
PubMed ID  24567410 Mgi Jnum  J:328676
Mgi Id  MGI:6868400 Doi  10.1073/pnas.1320265111
Citation  Hoshii T, et al. (2014) Loss of mTOR complex 1 induces developmental blockage in early T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 111(10):3805-10
abstractText  mTOR is an evolutionarily conserved kinase that plays a critical role in sensing and responding to environmental determinants. Recent studies have shown that fine-tuning of the activity of mTOR complexes contributes to organogenesis and tumorigenesis. Although rapamycin, an allosteric mTOR inhibitor, is an effective immunosuppressant, the precise roles of mTOR complexes in early T-cell development remain unclear. Here we show that mTORC1 plays a critical role in the development of both early T-cell progenitors and leukemia. Deletion of Raptor, an essential component of mTORC1, produced defects in the earliest development of T-cell progenitors in vivo and in vitro. Deficiency of Raptor resulted in cell cycle abnormalities in early T-cell progenitors that were associated with instability of the Cyclin D2/D3-CDK6 complexes; deficiency of Rictor, an mTORC2 component, did not have the same effect, indicating that mTORC1 and -2 control T-cell development in different ways. In a model of myeloproliferative neoplasm and T-cell acute lymphoblastic leukemia (T-ALL) evoked by Kras activation, Raptor deficiency dramatically inhibited the cell cycle in oncogenic Kras-expressing T-cell progenitors, but not myeloid progenitors, and specifically prevented the development of T-ALL. Although rapamycin treatment significantly prolonged the survival of recipient mice bearing T-ALL cells, rapamycin-insensitive leukemia cells continued to propagate in vivo. In contrast, Raptor deficiency in the T-ALL model resulted in cell cycle arrest and efficient eradication of leukemia. Thus, understanding the cell-context-dependent role of mTORC1 illustrates the potential importance of mTOR signals as therapeutic targets.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression