|  Help  |  About  |  Contact Us

Publication : Undulated short-tail deletion mutation in the mouse ablates Pax1 and leads to ectopic activation of neighboring Nkx2-2 in domains that normally express Pax1.

First Author  Kokubu C Year  2003
Journal  Genetics Volume  165
Issue  1 Pages  299-307
PubMed ID  14504237 Mgi Jnum  J:85847
Mgi Id  MGI:2677127 Doi  10.1093/genetics/165.1.299
Citation  Kokubu C, et al. (2003) Undulated short-tail deletion mutation in the mouse ablates Pax1 and leads to ectopic activation of neighboring Nkx2-2 in domains that normally express Pax1. Genetics 165(1):299-307
abstractText  Previous studies have indicated that the Undulated short-tail deletion mutation in mouse Pax1 (Pax1(Un-s)) not only ablates Pax1, but also disturbs a gene or genes nearby Pax1. However, which gene(s) is involved and how the Pax1(Un-s) phenotype is confined to the Pax1-positive tissues remain unknown. In the present study, we determined the Pax1(Un-s) deletion interval to be 125 kb and characterized genes around Pax1. We show that the Pax1(Un-s) mutation affects four physically linked genes within or near the deletion, including Pax1, Nkx2-2, and their potential antisense genes. Remarkably, Nkx2-2 is ectopically activated in the sclerotome and limb buds of Pax1(Un-s) embryos, both of which normally express Pax1. This result suggests that the Pax1(Un-s) deletion leads to an illegitimate interaction between remotely located Pax1 enhancers and the Nkx2-2 promoter by disrupting an insulation mechanism between Pax1 and Nkx2-2. Furthermore, we show that expression of Bapx1, a downstream target of Pax1, is more strongly affected in Pax1(Un-s) mutants than in Pax1-null mutants, suggesting that the ectopic expression of Nkx2-2 interferes with the Pax1-Bapx1 pathway. Taken together, we propose that a combination of a loss-of-function mutation of Pax1 and a gain-of-function mutation of Nkx2-2 is the molecular basis of the Pax1(Un-s) mutation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

22 Bio Entities

Trail: Publication

25 Expression

Trail: Publication