|  Help  |  About  |  Contact Us

Publication : Novel Tumor Organoid-Based Mouse Model to Study Image Guided Radiation Therapy of Rectal Cancer After Noninvasive and Precise Endoscopic Implantation.

First Author  Felchle H Year  2024
Journal  Int J Radiat Oncol Biol Phys Volume  118
Issue  4 Pages  1094-1104
PubMed ID  37875245 Mgi Jnum  J:347649
Mgi Id  MGI:7625784 Doi  10.1016/j.ijrobp.2023.10.008
Citation  Felchle H, et al. (2024) Novel Tumor Organoid-Based Mouse Model to Study Image Guided Radiation Therapy of Rectal Cancer After Noninvasive and Precise Endoscopic Implantation. Int J Radiat Oncol Biol Phys 118(4):1094-1104
abstractText  PURPOSE: Preoperative (neoadjuvant) radiation therapy (RT) is an essential part of multimodal rectal cancer therapy. Recently, total neoadjuvant therapy (TNT), which combines simultaneous radiochemotherapy with additional courses of chemotherapy, has emerged as an effective approach. TNT achieves a pathologic complete remission in approximately 30% of resected patients, opening avenues for treatment strategies that avoid radical organ resection. Furthermore, recent studies have demonstrated that anti-programmed cell death protein 1 immunotherapy can induce clinical complete responses in patients with specific genetic alterations. There is significant potential to enhance outcomes through intensifying, personalizing, and de-escalating treatment approaches. However, the heterogeneous response rates to RT or TNT and strategies to sensitize patients without specific genetic changes to immunotherapy remain poorly understood. METHODS AND MATERIALS: We developed a novel orthotopic mouse model of rectal cancer based on precisely defined endoscopic injections of tumor organoids that reflect tumor heterogeneity. Subsequently, we employed endoscopic- and computed tomography-guided RT and validated rectal tumor growth and response rates to therapy using small-animal magnetic resonance imaging and endoscopic follow-up. RESULTS: Rectal tumor formation was successfully induced in all mice after 2 organoid injections. Clinically relevant RT regimens with 5 x 5 Gy significantly delayed clinical signs of tumor progression and significantly improved survival. Consistent with human disease, rectal tumor progression correlated with the development of liver and lung metastases. Notably, long-term survivors after RT showed no evidence of tumor recurrence, as demonstrated by in vivo radiologic tumor staging and histopathologic examination. CONCLUSIONS: Our novel mouse model combines orthotopic tumor growth via noninvasive and precise rectal organoid injection and small-animal RT. This model holds significant promise for investigating the effect of tumor cell-intrinsic aspects, genetic alterations of the host, and exogenous factors (eg, nutrition or microbiota) on RT outcomes. Furthermore, it allows for the exploration of combination therapies involving chemotherapy, immunotherapy, or novel targeted therapies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression