|  Help  |  About  |  Contact Us

Publication : Secreted IgM deficiency leads to increased BCR signaling that results in abnormal splenic B cell development.

First Author  Tsiantoulas D Year  2017
Journal  Sci Rep Volume  7
Issue  1 Pages  3540
PubMed ID  28615655 Mgi Jnum  J:287412
Mgi Id  MGI:6407557 Doi  10.1038/s41598-017-03688-8
Citation  Tsiantoulas D, et al. (2017) Secreted IgM deficiency leads to increased BCR signaling that results in abnormal splenic B cell development. Sci Rep 7(1):3540
abstractText  Mice lacking secreted IgM (sIgM (-/-)) antibodies display abnormal splenic B cell development, which results in increased marginal zone and decreased follicular B cell numbers. However, the mechanism by which sIgM exhibit this effect is unknown. Here, we demonstrate that B cells in sIgM (-/-) mice display increased B cell receptor (BCR) signaling as judged by increased levels of phosphorylated Bruton's tyrosine kinase (pBtk), phosphorylated Spleen tyrosine kinase (pSyk), and nuclear receptor Nur77. Low dosage treatment with the pBtk inhibitor Ibrutinib reversed the altered B cell development in the spleen of sIgM (-/-) mice, suggesting that sIgM regulate splenic B cell differentiation by decreasing BCR signaling. Mechanistically, we show that B cells, which express BCRs specific to hen egg lysozyme (HEL) display diminished responsiveness to HEL stimulation in presence of soluble anti-HEL IgM antibodies. Our data identify sIgM as negative regulators of BCR signaling and suggest that they can act as decoy receptors for self-antigens that are recognized by membrane bound BCRs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression