|  Help  |  About  |  Contact Us

Publication : Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy.

First Author  Maire CL Year  2014
Journal  Stem Cells Volume  32
Issue  1 Pages  313-26
PubMed ID  24395742 Mgi Jnum  J:206870
Mgi Id  MGI:5553196 Doi  10.1002/stem.1590
Citation  Maire CL, et al. (2014) Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells 32(1):313-26
abstractText  Therapeutic modulation of phosphatidylinositol 3-kinase (PI3K)/PTEN signaling is currently being explored for multiple neurological indications including brain tumors and seizure disorders associated with cortical malformations. The effects of PI3K/PTEN signaling are highly cell context dependent but the function of this pathway in specific subsets of neural stem/progenitor cells generating oligodendroglial lineage cells has not been fully studied. To address this, we created Olig2-cre:Pten(fl/fl) mice that showed a unique pattern of Pten loss and PI3K activation in Olig2-lineage cells. Olig2-cre:Pten(fl/fl) animals progressively developed central nervous system white matter hypermyelination by 3 weeks of age leading to later onset leukodystrophy, chronic neurodegeneration, and death by 9 months. In contrast, during immediate postnatal development, oligodendroglia were unaffected but abnormal and accelerated differentiation of lateral subventricular zone stem cells produced calretinin-positive interneuron dysplasia. Neural stem cells isolated from Olig2-cre:Pten(fl/fl) mice also exhibited accelerated differentiation and proliferation into calretinin-positive interneurons and oligodendrocytes indicating such effects are cell autonomous. Opposition of the pathway by treatment of human primary neural progenitor cells (NPCs) with the PI3K inhibitor, NVP-BKM120, blocked in vitro differentiation of neurons and oligodendroglia indicating PI3K/PTEN effects on NPCs can be bidirectional. In summary, our results suggest Pten is a developmental rheostat regulating interneuron and oligodendroglial differentiation and support testing of PI3K modulating drugs as treatment for developmental and myelination disorders. However, such agents may need to be administered at ages that minimize potential effects on early stem/progenitor cell development.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression