|  Help  |  About  |  Contact Us

Publication : Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction.

First Author  Israely I Year  2004
Journal  Curr Biol Volume  14
Issue  18 Pages  1657-63
PubMed ID  15380068 Mgi Jnum  J:93226
Mgi Id  MGI:3056253 Doi  10.1016/j.cub.2004.08.065
Citation  Israely I, et al. (2004) Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction. Curr Biol 14(18):1657-63
abstractText  Delta-catenin (delta-catenin) is a neuron-specific catenin, which has been implicated in adhesion and dendritic branching. Moreover, deletions of delta-catenin correlate with the severity of mental retardation in Cri-du-Chat syndrome (CDCS), which may account for 1% of all mentally retarded individuals. Interestingly, delta-catenin was first identified through its interaction with Presenilin-1 (PS1), the molecule most frequently mutated in familial Alzheimer's Disease (FAD). We investigated whether deletion of delta-catenin would be sufficient to cause cognitive dysfunction by generating mice with a targeted mutation of the delta-catenin gene (delta-cat(-/-)). We observed that delta-cat(-/-) animals are viable and have severe impairments in cognitive function. Furthermore, mutant mice display a range of abnormalities in hippocampal short-term and long-term synaptic plasticity. Also, N-cadherin and PSD-95, two proteins that interact with delta-catenin, are significantly reduced in mutant mice. These deficits are severe but specific because delta-cat(-/-) mice display a variety of normal behaviors, exhibit normal baseline synaptic transmission, and have normal levels of the synaptic adherens proteins E-cadherin and beta-catenin. These data reveal a critical role for delta-catenin in brain function and may have important implications for understanding mental retardation syndromes such as Cri-du-Chat and neurodegenerative disorders, such as Alzheimer's disease, that are characterized by cognitive decline.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression