|  Help  |  About  |  Contact Us

Publication : Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome.

First Author  Kobayashi Y Year  2002
Journal  Mol Cell Biol Volume  22
Issue  8 Pages  2769-76
PubMed ID  11909969 Mgi Jnum  J:75779
Mgi Id  MGI:2177843 Doi  10.1128/MCB.22.8.2769-2776.2002
Citation  Kobayashi Y, et al. (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 22(8):2769-76
abstractText  A growing number of DNA polymerases have been identified, although their physiological function and relation to human disease remain mostly unknown. DNA polymerase lambda (Pol lambda; also known as Pol beta2) has recently been identified as a member of the X family of DNA polymerases and shares 32% amino acid sequence identity with DNA Pol beta within the polymerase domain. With the use of homologous recombination, we generated Pol lambda(-/-) mice. Pol lambda(-/-) mice develop hydrocephalus with marked dilation of the lateral ventricles and exhibit a high rate of mortality after birth, although embryonic development appears normal. Pol lambda(-/-) mice also show situs inversus totalis and chronic suppurative sinusitis. The surviving male, but not female, Pol lambda(-/-) mice are sterile as a result of spermatozoal immobility. Microinjection of sperm from male Pol lambda(-/-) mice into oocytes gives rise to normal offspring, suggesting that the meiotic process is not impaired. Ultrastructural analysis reveals that inner dynein arms of cilia from both the ependymal cell layer and respiratory epithelium are defective, which may underlie the pathogenesis of hydrocephalus, situs inversus totalis, chronic sinusitis, and male infertility. Sensitivity of Pol lambda(-/-) cells to various kinds of DNA damage is indistinguishable from that of Pol lambda(+/+) cells. Collectively, Pol lambda(-/-) mice may provide a useful model for clarifying the pathogenesis of immotile cilia syndrome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression