|  Help  |  About  |  Contact Us

Publication : Spontaneous adult-onset pulmonary arterial hypertension attributable to increased endothelial oxidative stress in a murine model of hereditary hemorrhagic telangiectasia.

First Author  Toporsian M Year  2010
Journal  Arterioscler Thromb Vasc Biol Volume  30
Issue  3 Pages  509-17
PubMed ID  20042709 Mgi Jnum  J:172103
Mgi Id  MGI:5003424 Doi  10.1161/ATVBAHA.109.200121
Citation  Toporsian M, et al. (2010) Spontaneous adult-onset pulmonary arterial hypertension attributable to increased endothelial oxidative stress in a murine model of hereditary hemorrhagic telangiectasia. Arterioscler Thromb Vasc Biol 30(3):509-17
abstractText  OBJECTIVE: Loss-of-function mutations in genes coding for transforming growth factor-beta/bone morphogenetic protein receptors and changes in nitric oxide(*) (NO(*)) bioavailability are associated with hereditary hemorrhagic telangiectasia and some forms of pulmonary arterial hypertension. How these abnormalities lead to seemingly disparate pulmonary pathologies remains unknown. Endoglin (Eng), a transforming growth factor-beta coreceptor, is mutated in hereditary hemorrhagic telangiectasia and involved in regulating endothelial NO(*) synthase (eNOS)-derived NO(*) production and oxidative stress. Because some patients with pulmonary arterial hypertension harbor ENG mutations leading to haplo insufficiency, we investigated the pulmonary vasculature of Eng(+/-) mice and the potential contribution of abnormal eNOS activation to pulmonary arterial hypertension. METHODS AND RESULTS: Hemodynamic, histological, and biochemical assessments and x-ray micro-CT imaging of adult Eng(+/-) mice indicated signs of pulmonary arterial hypertension including increased right ventricular systolic pressure, degeneration of the distal pulmonary vasculature, and muscularization of small arteries. These findings were absent in 3-week-old Eng(+/-) mice and were attributable to constitutively uncoupled eNOS activity in the pulmonary circulation, as evidenced by reduced eNOS/heat shock protein 90 association and increased eNOS-derived superoxide ((*)O(2)(-)) production in a BH(4)-independent manner. These changes render eNOS unresponsive to regulation by transforming growth factor-beta/bone morphogenetic protein and underlie the signs of pulmonary arterial hypertension that were prevented by Tempol. CONCLUSIONS: Adult Eng(+/-) mice acquire signs of pulmonary arterial hypertension that are attributable to uncoupled eNOS activity and increased (*)O(2)(-) production, which can be prevented by antioxidant treatment. Eng links transforming growth factor/bone morphogenetic protein receptors to the eNOS activation complex, and its reduction in the pulmonary vasculature leads to increased oxidative stress and pulmonary arterial hypertension.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression