|  Help  |  About  |  Contact Us

Publication : Mouse endocrine gland-derived vascular endothelial growth factor: a distinct expression pattern from its human ortholog suggests different roles as a regulator of organ-specific angiogenesis.

First Author  LeCouter J Year  2003
Journal  Endocrinology Volume  144
Issue  6 Pages  2606-16
PubMed ID  12746324 Mgi Jnum  J:83679
Mgi Id  MGI:2663313 Doi  10.1210/en.2002-0146
Citation  LeCouter J, et al. (2003) Mouse endocrine gland-derived vascular endothelial growth factor: a distinct expression pattern from its human ortholog suggests different roles as a regulator of organ-specific angiogenesis. Endocrinology 144(6):2606-16
abstractText  We recently described human endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as an endothelial cell mitogen with a novel selective activity and an expression pattern essentially limited to steroidogenic glands. Herein we present the identification and characterization of the mouse ortholog. The mouse cDNA and predicted amino acid sequences are, respectively, 86% and 88% identical with the human. Surprisingly, the mouse EG-VEGF transcript is predominantly expressed in liver and kidney. A comparison of human and mouse EG-VEGF promoter sequences revealed a potential binding site for NR5A1, which is known to be a pivotal element for steroidogenic-specific transcription, in the human but not mouse promoter. In situ hybridization studies localized expression of mouse EG-VEGF mRNA to hepatocytes and renal tubule cells. Interestingly, capillary endothelial cells in these sites share several common structural features with those found in steroidogenic glands. Within liver and kidney, EG-VEGF receptor expression was largely restricted to endothelial cells. Mouse EG-VEGF promoted proliferation and survival of endothelial cells. We propose that mouse EG-VEGF, like human EG-VEGF, plays a role in regulating the phenotype and growth properties of endothelial cells within distinct capillary beds.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

78 Expression

Trail: Publication