|  Help  |  About  |  Contact Us

Publication : GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness.

First Author  Peachey NS Year  2012
Journal  Am J Hum Genet Volume  90
Issue  2 Pages  331-9
PubMed ID  22325362 Mgi Jnum  J:185567
Mgi Id  MGI:5429339 Doi  10.1016/j.ajhg.2011.12.006
Citation  Peachey NS, et al. (2012) GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90(2):331-9
abstractText  Complete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual functions. We report here that mutations in GPR179, encoding an orphan G protein receptor, underlie a form of autosomal-recessive cCSNB. The Gpr179(nob5/nob5) mouse model was initially discovered by the absence of the ERG b-wave, a component that reflects depolarizing bipolar cell (DBC) function. We performed genetic mapping, followed by next-generation sequencing of the critical region and detected a large transposon-like DNA insertion in Gpr179. The involvement of GPR179 in DBC function was confirmed in zebrafish and humans. Functional knockdown of gpr179 in zebrafish led to a marked reduction in the amplitude of the ERG b-wave. Candidate gene analysis of GPR179 in DNA extracted from patients with cCSNB identified GPR179-inactivating mutations in two patients. We developed an antibody against mouse GPR179, which robustly labeled DBC dendritic terminals in wild-type mice. This labeling colocalized with the expression of GRM6 and was absent in Gpr179(nob5/nob5) mutant mice. Our results demonstrate that GPR179 plays a critical role in DBC signal transduction and expands our understanding of the mechanisms that mediate normal rod vision.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression