|  Help  |  About  |  Contact Us

Publication : AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response.

First Author  Luo D Year  2008
Journal  J Biol Chem Volume  283
Issue  18 Pages  11905-12
PubMed ID  18281285 Mgi Jnum  J:136554
Mgi Id  MGI:3796479 Doi  10.1074/jbc.M710557200
Citation  Luo D, et al. (2008) AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response. J Biol Chem 283(18):11905-12
abstractText  We have previously shown that ASK1-interacting protein 1 (AIP1) transduces tumor necrosis factor-induced ASK1-JNK signaling. Because endoplasmic reticulum (ER) stress activates ASK1-JNK signaling cascade, we investigated the role of AIP1 in ER stress-induced signaling. We created AIP1-deficient mice (AIP1-KO) from which mouse embryonic fibroblasts and vascular endothelial cells were isolated. AIP1-KO cells show dramatic reductions in ER stress-induced, but not oxidative stress-induced, ASK1-JNK activation and cell apoptosis. The ER stress-induced IRE1-JNK/XBP-1 axis, but not the PERK-CHOP1 axis, is blunted in AIP1-KO cells. ER stress induced formation of an AIP1-IRE1 complex, and the PH domain of AIP1 is critical for the IRE1 interaction. Furthermore, reconstitution of AIP1-KO cells with AIP1 wild type, not an AIP1 mutant with a deletion of the PH domain (AIP1-DeltaPH), restores ER stress-induced IRE1-JNK/XBP-1 signaling. AIP1-IRE1 association facilitates IRE1 dimerization, a critical step for activation of IRE1 signaling. More importantly, AIP1-KO mice show impaired ER stress-induced IRE1-dependent signaling in vivo. We conclude that AIP1 is essential for transducing the IRE1-mediated ER stress response.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

15 Bio Entities

Trail: Publication

0 Expression