|  Help  |  About  |  Contact Us

Publication : Enhanced behavioral sensitivity to the competitive GABA agonist, gaboxadol, in transgenic mice over-expressing hippocampal extrasynaptic alpha6beta GABA(A) receptors.

First Author  Saarelainen KS Year  2008
Journal  J Neurochem Volume  105
Issue  2 Pages  338-50
PubMed ID  18021290 Mgi Jnum  J:141556
Mgi Id  MGI:3818791 Doi  10.1111/j.1471-4159.2007.05136.x
Citation  Saarelainen KS, et al. (2008) Enhanced behavioral sensitivity to the competitive GABA agonist, gaboxadol, in transgenic mice over-expressing hippocampal extrasynaptic alpha6beta GABA(A) receptors. J Neurochem 105(2):338-50
abstractText  The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression