|  Help  |  About  |  Contact Us

Publication : Expression and localization of StarD7 in trophoblast cells.

First Author  Angeletti S Year  2008
Journal  Placenta Volume  29
Issue  5 Pages  396-404
PubMed ID  18378304 Mgi Jnum  J:286799
Mgi Id  MGI:6388775 Doi  10.1016/j.placenta.2008.02.011
Citation  Angeletti S, et al. (2008) Expression and localization of StarD7 in trophoblast cells. Placenta 29(5):396-404
abstractText  The StAR-related lipid transfer (START) domain is defined as a motif of around 200 amino acids implicated in lipid/sterol binding. In a previous study, we identified the StarD7 transcript encoding one of the 15 family members with START domain present in the human genome. This transcript was found to be overexpressed in choriocarcinoma JEG-3 cells. In addition, we demonstrated that the recombinant StarD7 protein forms stable Gibbs and Langmuir monolayers at the air-buffer interface, showing marked surface activity and interaction with phospholipid monolayers, mainly with phosphatidylserine, cholesterol and phosphatidylglycerol. This study was undertaken to evaluate the expression and localization of StarD7 protein in trophoblastic samples. Here, we show for the first time the presence of StarD7 protein in human trophoblast cells. Western blot assays revealed a unique specific 34 kDa protein in JEG-3 cell line, choriocarcinoma tissue, complete hydatidiform mole, early and normal term placenta. Immunohistochemical data from early and normal term placentas and complete hydatidiform moles showed that this protein is abundant in the syncytiotrophoblasts, mainly at the apical side of the syncytium, with a weak and focal reaction in the cytotrophoblast cells. Furthermore, an increased StarD7 mRNA and protein expression, as well as a change in its sub-cellular localization was observed in in vitro differentiating cytotrophoblast isolated from normal term placenta. Taken together, these findings support and allow future studies to explore the possibility that StarD7 protein mediates transplacental lipid transport and/or is involved in syncytialization.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression