|  Help  |  About  |  Contact Us

Publication : Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids.

First Author  Huber J Year  2007
Journal  Int J Obes (Lond) Volume  31
Issue  6 Pages  1004-13
PubMed ID  17130847 Mgi Jnum  J:151296
Mgi Id  MGI:4353505 Doi  10.1038/sj.ijo.0803511
Citation  Huber J, et al. (2007) Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids. Int J Obes (Lond) 31(6):1004-13
abstractText  OBJECTIVE: Obesity is associated with reduced insulin sensitivity and extensive reorganization of adipose tissue. As polyunsaturated fatty acids (PUFA) appear to inhibit diabetes development, we investigated PUFA effects on markers of matrix remodeling in white adipose tissue. METHODS AND PROCEDURE: Male obese diabetic (db/db) mice were treated with either a low-fat standard diet (LF), or high-fat diets rich in saturated and monounsaturated fatty acids (HF/S), n-6 PUFA (HF/6) or the latter including marine n-3 PUFA (HF/3). White adipose tissue was analyzed for gene expression, fatty acid composition and by immunofluorescence. RESULTS: HF/S treatment increased adipose tissue expression of a number of genes involved in matrix degradation including matrix metalloproteinase (MMP)-12, -14 and cathepsin K, L and S compared with LF. MMP-12 gene was expressed in macrophages and adipocytes, and MMP-12 protein colocalized with both cell types. In addition, mean adipocyte area increased by 1.6-fold in HF/S-treated mice. Genes essential for collagen production, such as procollagen I, III, VI, tenascin C and biglycan were upregulated in HF/S-treated animals as well. N-3 PUFA supplementation resulted in enrichment of these fatty acids in adipose tissue. Moreover, n-3 PUFA inhibited the HF/S-induced upregulation of genes involved in matrix degradation and production I restored mean adipocyte area and prevented MMP-12 expression in macrophages and adipocytes. CONCLUSION: N-3 PUFA prevent high-fat diet-induced matrix remodeling and adipocyte enlargement in adipose tissue of obese diabetic mice. Such changes could contribute to diabetes prevention by n-3 PUFA in obese patients.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression