|  Help  |  About  |  Contact Us

Publication : Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways.

First Author  An H Year  2002
Journal  Immunol Lett Volume  81
Issue  3 Pages  165-9
PubMed ID  11947920 Mgi Jnum  J:76644
Mgi Id  MGI:2179889 Doi  10.1016/s0165-2478(02)00010-x
Citation  An H, et al. (2002) Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunol Lett 81(3):165-9
abstractText  Toll-like receptors (TLR) are critical in the activation of macrophages by bacterial products. It has been shown that TLR2 and TLR4 mediate lipopolysaccharide (LPS) and lipoproteins signal transduction, respectively. Regulation of TLR2 and TLR4 expression by LPS was considered to be one of the mechanisms to control the overall responses of immune cells to bacteria. However, little is known about whether the other members of TLR family are regulated by LPS. Recently, TLR9 was demonstrated to be essential for CpG DNA signaling. Given the effective immune modulation by CpG DNA, regulation of TLR9 expression might play important role in controlling the overall responses of immune cells to bacteria. In this study, regulation of TLR9 gene expression in mouse macrophage cell line RAW264.7 by LPS was investigated. Semiquantitative RT-PCR was performed to determine gene expression of TLR9. Following LPS stimulation, TLR9 gene expression was upregulated within 1 h and reached peak level at about 3 h. LPS stimulation activated NF-kappaB, ERK and p38 MAPK signal pathways. Pretreatment of macrophages with inhibitors of NF-kappaB, ERK and p38 MAPK signal pathways inhibited LPS-induced upregulation of TLR9 mRNA expression. Our results demonstrated that LPS stimulation could upregulate gene expression of TLR9 via NF-kappaB, ERK, and p38 MAPK signal pathways in macrophages, indicating that macrophages with increased TLR9 expression induced by LPS might respond to invading bacteria more effectively.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression