|  Help  |  About  |  Contact Us

Publication : Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis.

First Author  Munugalavadla V Year  2007
Journal  Blood Volume  110
Issue  5 Pages  1612-20
PubMed ID  17483298 Mgi Jnum  J:145519
Mgi Id  MGI:3834840 Doi  10.1182/blood-2006-10-053058
Citation  Munugalavadla V, et al. (2007) Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis. Blood 110(5):1612-20
abstractText  Oncogenic activation loop KIT mutations are observed in acute myeloid leukemia (AML) and systemic mastocytosis (SM); however, unlike the KIT juxtamembrane mutants, the activation loop mutants are insensitive to imatinib mesylate. Furthermore, as prior studies primarily used heterologous cell lines, the molecular mechanism(s) underlying oncogenic KIT-induced transformation in primary cells is poorly understood. We demonstrate that expression of KITD814V in primary hematopoietic stem/progenitor cells (HSC/Ps) and mast cell progenitors (MCps) induces constitutive KIT autophosphorylation, supports ligand-independent hyperproliferation, and promotes promiscuous cooperation with multiple cytokines. Genetic disruption of p85 alpha, the regulatory subunit of class IA lipid kinase phosphoinositol-3-kinase (PI3K), but not of p85 beta, or genetic disruption of the hematopoietic cell-specific Rho GTPase, Rac2, normalizes KITD814V-induced ligand-independent hyperproliferation. Additionally, deficiency of p85 alpha or Rac2 corrects the promiscuous hyperproliferation observed in response to multiple cytokines in both KITD814V-expressing HSC/Ps and MCps. Treatment of KITD814V-expressing HSC/Ps with a Rac inhibitor (NC23766) or with rapamycin showed a dose-dependent suppression in ligand-independent growth. Taken together, our results identify p85 alpha and Rac2 as potential novel therapeutic targets for the treatment of KITD814V-bearing AML and SM.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression