|  Help  |  About  |  Contact Us

Publication : Regulation of peroxisome proliferator-activated receptor-gamma in liver fibrosis.

First Author  Yang L Year  2006
Journal  Am J Physiol Gastrointest Liver Physiol Volume  291
Issue  5 Pages  G902-11
PubMed ID  16798724 Mgi Jnum  J:116893
Mgi Id  MGI:3695194 Doi  10.1152/ajpgi.00124.2006
Citation  Yang L, et al. (2006) Regulation of peroxisome proliferator-activated receptor-gamma in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 291(5):G902-11
abstractText  The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression