|  Help  |  About  |  Contact Us

Publication : Point mutations of K-ras and H-ras genes in forestomach neoplasms from control B6C3F1 mice and following exposure to 1,3-butadiene, isoprene or chloroprene for up to 2-years.

First Author  Sills RC Year  2001
Journal  Chem Biol Interact Volume  135-136
Pages  373-86 PubMed ID  11397402
Mgi Jnum  J:69717 Mgi Id  MGI:2135359
Doi  10.1016/s0009-2797(01)00179-x Citation  Sills RC, et al. (2001) Point mutations of K-ras and H-ras genes in forestomach neoplasms from control B6C3F1 mice and following exposure to 1,3-butadiene, isoprene or chloroprene for up to 2-years. Chem Biol Interact 135-136:373-86
abstractText  1,3 Butadiene (BD), isoprene (IP) and chloroprene (CP) are structural analogs. There were significantly increased incidences of forestomach neoplasms in B6C3F1 mice exposed to BD, IP or CP by inhalation for up to 2-years. The present study was designed to characterize genetic alterations in K- and H-ras proto-oncogenes in a total of 52 spontaneous and chemically induced forestomach neoplasms. ras mutations were identified by restriction fragment length polymorphism, single strand conformational polymorphism analysis, and cycle sequencing of PCR-amplified DNA isolated from paraffin-embedded forestomach neoplasms. A higher frequency of K- and H-ras mutations was identified in BD-, IP- and CP-induced forestomach neoplasms (83, 70 and 57%, respectively, or combined 31/41, 76%) when compared to spontaneous forestomach neoplasms (4/11, 36%). Also a high frequency of H-ras codon 61 CAA-->CTA transversions (10/41, 24%) was detected in chemically induced forestomach neoplasms, but none were present in the spontaneous forestomach neoplasms examined. Furthermore, an increased frequency (treated 13/41, 32% versus untreated 1/11, 9%) of GGC-->CGC transversion at K-ras codon 13 was seen in BD-, and IP-induced forestomach neoplasms, similar to the predominant K-ras mutation pattern observed in BD-induced mouse lung neoplasms. These data suggest that the epoxide intermediates of the structurally related chemicals (BD, IP, and CP) may cause DNA damage in K-ras and H-ras proto-oncogenes of B6C3F1 mice following inhalation exposure and that mutational activation of these genes may be critical events in the pathogenesis of forestomach neoplasms induced in the B6C3F1 mouse.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression