|  Help  |  About  |  Contact Us

Publication : Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin.

First Author  Itoh M Year  1999
Journal  J Biol Chem Volume  274
Issue  9 Pages  5981-6
PubMed ID  10026224 Mgi Jnum  J:53203
Mgi Id  MGI:1331508 Doi  10.1074/jbc.274.9.5981
Citation  Itoh M, et al. (1999) Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 274(9):5981-6
abstractText  ZO-2, a member of the MAGUK family, was thought to be specific for tight junctions (TJs) in contrast to ZO-1, another MAGUK family member, which is localized at TJs and adherens junctions (AJs) in epithelial and nonepithelial cells, respectively. Mouse ZO-2 cDNA was isolated, and a specific polyclonal antibody was generated using corresponding synthetic peptides as antigens. Immunofluorescence microscopy with this polyclonal antibody revealed that, similarly to ZO-1, in addition to TJs in epithelial cells, ZO-2 was also concentrated at AJs in nonepithelial cells such as fibroblasts and cardiac muscle cells lacking TJs. When NH2-terminal dlg-like and COOH-terminal non-dlg-like domains of ZO-2 (N-ZO-2 and C-ZO-2, respectively) were separately introduced into cultured cells, N-ZO-2 was colocalized with endogenous ZO-1/ZO-2, i.e. at TJs in epithelial cells and at AJs in non-epithelial cells, whereas C-ZO-2 was distributed along actin filaments. Consistently, occludin as well as alpha catenin directly bound to N-ZO-2 as well as the NH2-terminal dlg-like portion of ZO-1 (N-ZO-1) in vitro. Furthermore, immunoprecipitation experiments revealed that the second PDZ domain of ZO-2 was directly associated with N-ZO-1. These findings indicated that ZO-2 forms a complex with ZO-1/occludin or ZO-1/alpha catenin to establish TJ or AJ domains, respectively.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

5 Bio Entities

Trail: Publication

0 Expression