|  Help  |  About  |  Contact Us

Publication : The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo.

First Author  Relaix F Year  2003
Journal  Genes Dev Volume  17
Issue  23 Pages  2950-65
PubMed ID  14665670 Mgi Jnum  J:86911
Mgi Id  MGI:2682455 Doi  10.1101/gad.281203
Citation  Relaix F, et al. (2003) The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev 17(23):2950-65
abstractText  Pax3 is a key transcription factor implicated in development and human disease. To dissect the role of Pax3 in myogenesis and establish whether it is a repressor or activator, we generated loss- and gain-of-function alleles by targeting an nLacZ reporter and a sequence encoding the oncogenic fusion protein PAX3-FKHR into the Pax3 locus. Rescue of the Pax3 mutant phenotypes by PAX3-FKHR suggests that Pax3 acts as a transcriptional activator during embryogenesis. This is confirmed by a Pax reporter mouse. However, mice expressing PAX3-FKHR display developmental defects, including ectopic delamination and inappropriate migration of muscle precursor cells. These events result from overexpression of c-met, leading to constitutive activation of Met signaling, despite the absence of the ligand SF/HGF. Haploinsufficiency of c-met rescues this phenotype, confirming the direct genetic link with Pax3. The gain-of-function phenotype is also characterized by overactivation of MyoD. The consequences of PAX3-FKHR myogenic activity in the limbs and cervical and thoracic regions point to differential regulation of muscle growth and patterning. This gain-of-function allele provides a new approach to the molecular and cellular analysis of the role of Pax3 and of its target genes in vivo.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

20 Bio Entities

Trail: Publication

0 Expression