|  Help  |  About  |  Contact Us

Publication : Highly activated c-fos expression in specific brain regions (ependyma, circumventricular organs, choroid plexus) of histidine decarboxylase deficient mice in response to formalin-induced acute pain.

First Author  Palkovits M Year  2007
Journal  Neuropharmacology Volume  53
Issue  1 Pages  101-12
PubMed ID  17544458 Mgi Jnum  J:129908
Mgi Id  MGI:3770372 Doi  10.1016/j.neuropharm.2007.04.001
Citation  Palkovits M, et al. (2007) Highly activated c-fos expression in specific brain regions (ependyma, circumventricular organs, choroid plexus) of histidine decarboxylase deficient mice in response to formalin-induced acute pain. Neuropharmacology 53(1):101-12
abstractText  Activation of different brain regions for acute pain-related stress induced by a single subcutaneous injection of 4% formalin was investigated in histidine decarboxylase-deficient mice. Besides pain- and stress-related brain areas and the tuberomamillary neurons, strong Fos activation and c-fos mRNA expression were found in distinct brain regions and cell types, which have not been activated in wild type control mice. These structures include the circumventricular organs (organum vasculosum of the lamina terminalis, subfornical organ, area postrema), some of the ependymal cells along the wall of the ventricles, tanycytes in the third ventricle's ependyma and the median eminence, as well as in the epithelial cells of the choroid plexus in the lateral, third and fourth ventricles. All of these areas and cell types are known as compartments of the brain-blood-cerebrospinal fluid interface. The present observations provide strong evidence that an acute stressor, formalin-evoked painful stimulus elicits rapid alterations in the activity of neuroglial elements of histidine decarboxylase-deficient mice that are directly involved in the communication between the brain and the cerebrospinal fluid space.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression