|  Help  |  About  |  Contact Us

Publication : Deletion of Slc26a6 alters the stoichiometry of apical Cl-/HCO-3 exchange in mouse pancreatic duct.

First Author  Song Y Year  2012
Journal  Am J Physiol Cell Physiol Volume  303
Issue  8 Pages  C815-24
PubMed ID  22895259 Mgi Jnum  J:192779
Mgi Id  MGI:5466469 Doi  10.1152/ajpcell.00151.2012
Citation  Song Y, et al. (2012) Deletion of Slc26a6 alters the stoichiometry of apical Cl-/HCO-3 exchange in mouse pancreatic duct. Am J Physiol Cell Physiol 303(8):C815-24
abstractText  To define the stoichiometry and molecular identity of the Cl(-)/HCO(3)(-) exchanger in the apical membrane of pancreatic duct cells, changes in luminal pH and volume were measured simultaneously in interlobular pancreatic ducts isolated from wild-type and Slc26a6-null mice. Transepithelial fluxes of HCO(3)(-) and Cl(-) were measured in the presence of anion gradients favoring rapid exchange of intracellular HCO(3)(-) with luminal Cl(-) in cAMP-stimulated ducts. The flux ratio of Cl(-) absorption/HCO(3)(-) secretion was approximately 0.7 in wild-type ducts and approximately 1.4 in Slc26a6(-/-) ducts where a different Cl(-)/HCO(3)(-) exchanger, most likely SLC26A3, was found to be active. Interactions between Cl(-)/HCO(3)(-) exchange and cystic fibrosis transmembrane conductance regulator (CFTR) in cAMP-stimulated ducts were examined by measuring the recovery of intracellular pH after alkali-loading by acetate prepulse. Hyperpolarization induced by luminal application of CFTRinh-172 enhanced HCO(3)(-) efflux across the apical membrane via SLC26A6 in wild-type ducts but significantly reduced HCO(3)(-) efflux in Slc26a6(-/-) ducts. In microperfused wild-type ducts, removal of luminal Cl(-), or luminal application of dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid to inhibit SLC26A6, caused membrane hyperpolarization, which was abolished in Slc26a6(-/-) ducts. In conclusion, we have demonstrated that deletion of Slc26a6 alters the apparent stoichiometry of apical Cl(-)/HCO(3)(-) exchange in native pancreatic duct. Our results are consistent with SLC26A6 mediating 1:2 Cl(-)/HCO(3)(-) exchange, and the exchanger upregulated in its absence, most probably SLC26A3, mediating 2:1 exchange.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression