|  Help  |  About  |  Contact Us

Publication : Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes.

First Author  Ellsworth RE Year  2000
Journal  Proc Natl Acad Sci U S A Volume  97
Issue  3 Pages  1172-7
PubMed ID  10655503 Mgi Jnum  J:60184
Mgi Id  MGI:1352949 Doi  10.1073/pnas.97.3.1172
Citation  Ellsworth RE, et al. (2000) Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes. Proc Natl Acad Sci U S A 97(3):1172-7
abstractText  The identification of the cystic fibrosis transmembrane conductance regulator gene (CFTR) in 1989 represents a landmark accomplishment in human genetics. Since that time, there have been numerous advances in elucidating the function of the encoded protein and the physiological basis of cystic fibrosis. However, numerous areas of cystic fibrosis biology require additional investigation, some of which would be facilitated by information about the long-range sequence context of the CFTR gene. For example, the latter might provide clues about the sequence elements responsible for the temporal and spatial regulation of CFTR expression. We thus sought to establish the sequence of the chromosomal segments encompassing the human CFTR and mouse Cftr genes, with the hope of identifying conserved regions of biologic interest by sequence comparison. Bacterial clone-based physical maps of the relevant human and mouse genomic regions were constructed, and minimally overlapping sets of clones were selected and sequenced, eventually yielding approximately 1.6 Mb and approximately 358 kb of contiguous human and mouse sequence, respectively. These efforts have produced the complete sequence of the approximately 189-kb and approximately 152-kb segments containing the human CFTR and mouse Cftr genes, respectively, as well as significant amounts of flanking DNA. Analyses of the resulting data provide insights about the organization of the CFTR/Cftr genes and potential sequence elements regulating their expression. Furthermore, the generated sequence reveals the precise architecture of genes residing near CFTR/Cftr, including one known gene (WNT2/Wnt2) and two previously unknown genes that immediately flank CFTR/Cftr.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression