|  Help  |  About  |  Contact Us

Publication : Extra-intestinal calcium handling contributes to normal serum calcium levels when intestinal calcium absorption is suboptimal.

First Author  Lieben L Year  2015
Journal  Bone Volume  81
Pages  502-12 PubMed ID  26319498
Mgi Jnum  J:228435 Mgi Id  MGI:5707093
Doi  10.1016/j.bone.2015.08.023 Citation  Lieben L, et al. (2015) Extra-intestinal calcium handling contributes to normal serum calcium levels when intestinal calcium absorption is suboptimal. Bone 81:502-12
abstractText  The active form of vitamin D, 1,25(OH)2D, is a crucial regulator of calcium homeostasis, especially through stimulation of intestinal calcium transport. Lack of intestinal vitamin D receptor (VDR) signaling does however not result in hypocalcemia, because the increased 1,25(OH)2D levels stimulate calcium handling in extra-intestinal tissues. Systemic VDR deficiency, on the other hand, results in hypocalcemia because calcium handling is impaired not only in the intestine, but also in kidney and bone. It remains however unclear whether low intestinal VDR activity, as observed during aging, is sufficient for intestinal calcium transport and for mineral and bone homeostasis. To this end, we generated mice that expressed the Vdr exclusively in the gut, but at reduced levels. We found that ~15% of intestinal VDR expression greatly prevented the Vdr null phenotype in young-adult mice, including the severe hypocalcemia. Serum calcium levels were, however, in the low-normal range, which may be due to the suboptimal intestinal calcium absorption, renal calcium loss, insufficient increase in bone resorption and normal calcium incorporation in the bone matrix. In conclusion, our results indicate that low intestinal VDR levels improve intestinal calcium absorption compared to Vdr null mice, but also show that 1,25(OH)2D-mediated fine-tuning of renal calcium reabsorption and bone mineralization and resorption is required to maintain fully normal serum calcium levels.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression