|  Help  |  About  |  Contact Us

Publication : Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation.

First Author  Pascoli V Year  2011
Journal  Biol Psychiatry Volume  69
Issue  3 Pages  218-27
PubMed ID  21055728 Mgi Jnum  J:250528
Mgi Id  MGI:6099326 Doi  10.1016/j.biopsych.2010.08.031
Citation  Pascoli V, et al. (2011) Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol Psychiatry 69(3):218-27
abstractText  BACKGROUND: Activation of the extracellular signal-regulated kinase (ERK) in the striatum is crucial for long-term behavioral alterations induced by drugs of abuse. In response to cocaine, ERK phosphorylation (i.e., activation) is restricted to medium-sized spiny neurons expressing dopamine D1 receptor (D1R) and depends on a concomitant stimulation of D1R and glutamate N-methyl-D-aspartate receptor (NMDAR). However, the mechanisms responsible for this activation, especially the respective contribution of D1R and NMDAR, remain unknown. METHODS: We studied striatal neurons in culture stimulated with D1R agonist and/or glutamate and wild-type or genetically modified mice treated with cocaine. Biochemical, immunohistochemical, and imaging studies were performed. Mice were also subjected to behavioral experiments. RESULTS: Stimulation of D1R cannot activate ERK by itself but potentiates glutamate-mediated calcium influx through NMDAR that is responsible for ERK activation. Potentiation of NMDAR by D1R depends on a cyclic adenosine monophosphate-independent signaling pathway, which involves tyrosine phosphorylation of the NR2B subunit of NMDAR by Src family kinases. We also demonstrate that the D1R/Src family kinases/NR2B pathway is responsible for ERK activation by cocaine in vivo. Inhibition of this pathway abrogates cocaine-induced locomotor sensitization and conditioned place preference. CONCLUSIONS: Our results show that potentiation of NR2B-containing NMDAR by D1R is necessary and sufficient to trigger cocaine-induced ERK activation. They highlight a new cyclic adenosine monophosphate-independent pathway responsible for the integration of dopamine and glutamate signals by the ERK cascade in the striatum and for long-term behavioral alterations induced by cocaine.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression