|  Help  |  About  |  Contact Us

Publication : Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice.

First Author  Ruan CC Year  2015
Journal  Arterioscler Thromb Vasc Biol Volume  35
Issue  3 Pages  598-606
PubMed ID  25573852 Mgi Jnum  J:241202
Mgi Id  MGI:5897976 Doi  10.1161/ATVBAHA.114.304927
Citation  Ruan CC, et al. (2015) Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. Arterioscler Thromb Vasc Biol 35(3):598-606
abstractText  OBJECTIVE: We have previously shown an increased expression of complement 3 (C3) in the perivascular adipose tissue (PVAT) in the deoxycorticosterone acetate (DOCA)-salt hypertensive model. This study aims to examine the role and underlying mechanism of C3 in PVAT for understanding the pathogenesis of hypertensive vascular remodeling further. APPROACH AND RESULTS: The role of C3 in macrophage polarization was investigated using peritoneal macrophages from wild-type and C3-deficient (C3KO) mice because we found that C3 was primarily expressed in macrophages in PVAT of blood vessels from DOCA-salt mice, and results showed a decreased expression of M1 phenotypic marker in contrast to an increased level of M2 marker in the C3KO macrophages. Bone marrow transplantation studies further showed in vivo that DOCA-salt recipient mice had fewer M1 but more M2 macrophages in PVAT when the donor bone marrows were from C3KO compared with those from wild-type mice. Of note, this macrophage polarization shift was accompanied with an ameliorated vascular injury. Furthermore, we identified the complement 5a (C5a) as the major C3 activation product that was involved in macrophage polarization and DOCA-salt-induced vascular injury. Consistently, in vivo depletion of macrophages prevented the induction of C3 and C5a in PVAT, and ameliorated hypertensive vascular injury as well. CONCLUSIONS: The presence and activation of bone marrow-derived macrophages in PVAT are crucial for complement activation in hypertensive vascular inflammation, and C5a plays a critical role in DOCA-salt-induced vascular injury by stimulating macrophage polarization toward a proinflammatory M1 phenotype in PVAT.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression